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Quantum chaos in the atomic gravitational cavity

Wen-Yu Chen and G. J. Milburn
Department of Physics, University of Queensland, Brisbane, Queensland 4072, Australia

~Received 15 January 1997!

We report quantum chaos phenomena in the atomic gravitational cavity. We consider the reflection of cold
atoms from a temporally modulated evanescent wave. In the globally chaotic regime, for small modulation, the
squared energy distribution as a function of time demonstrates dynamical localization. However, for larger
modulation delocalization occurs.@S1063-651X~97!11607-5#

PACS number~s!: 05.45.1b, 03.65.Sq, 42.50.Dv
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How will a classically chaotic system behave quantu
mechanically? This has been the topic for quantum chaos
tens of years. According to Casatiet al. @1#, when a classica
system is subjected to strong time-periodic perturbation
motion becomes globally chaotic, and it will indefinitely a
sorb energy from the external field in a diffusive way. Ho
ever, this ‘‘diffusive absorption’’ is suppressed by the qua
tum interference effect. This is the so-called dynami
localization phenomenon, which is the analogy of Anders
localization of solid state physics. This effect has been d
cussed in model systems in quantum chaos such as
kicked rotator@2#, quantum bouncer with infinite potentia
@3#, and atomic@4# and molecular@5# models. There is also
experimental evidence that it occurs in hydrogen atoms
Rydberg states driven by a strong microwave field@6,7# and
atoms in time-dependent standing wave@8,9#. Theoretically,
under appropriate conditions, it should appear in periodic
driven quantum systems, which are chaotic in their class
limit. Proposals for observing the effect include periodica
driven Josephson junctions@10# and optical fibres with peri-
odically varying index of refraction@11#.

Dynamical localization is a very general phenomenon
periodically driven systems, but it will not occur under co
ditions of resonance or in special cases distinguished
some form of translational invariance@12,13#. The ‘‘delocal-
ization’’ in such cases is a purely quantum effect: the lon
time unbounded propagation is not related to the correspo
ing classical diffusion@12#. But is there a quasiclassica
unbounded diffusion in the quantum context? By means
studying the dynamics of a quantum particle in a triangu
potential well under a monochromatic driving, Casatiet al.
@14,15# found that a simple, physically relevant model exh
its a transition from a localized regime to a delocalized o
as the strength of the monochromatic perturbation is
creased beyond a quantum border in addition to the clas
chaotic one. In Ref.@16#, the delocalization in systems suc
as this was explained in terms of a characteristic chang
the structure of the Floquet eigenstates of the system. S
behavior is generic for systems driven by a high freque
field, in which the density of states is slowly varying. Pr
cisely such conditions prevail in the atomic gravitation
cavity.

The system discussed in@14,15# models the dynamics of a
particle elastically bouncing on a fixed wall atx50 under a
constant field plus a monochromatic perturbation and is
scribed by the following Hamiltonian:
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H~x,p,t !5
p2

2
1«0x1«x cosvt, x>0, ~1!

where x and p are the position and momentum variable
«0 and« are the constant field strength and the perturbat
amplitude, andv is the perturbation frequency.

The condition for the onset of global chaotic behav
leading to dynamical localization is« l.«0/4. And the
threshold for the transition from localization to delocaliz
tion, that is the delocalization border, is«dl>0.5 v3/2 pro-
vided that the condition of classical chaos« l.«0/4 is also
satisfied.

The system we discuss is the atomic gravitational cav
@17#, consisting of atoms bouncing vertically from an ev
nescent light field, which provides a reflection potential s
varying rapidly with the distance from the boundary. T
amplitude of the light field is periodically modulated in tim
Atoms released from a magneto-optical trap~MOT! form a
cold ‘‘beam.’’ The cold atoms drop vertically, and are r
flected by the evanescent wave. We only consider the
namics in the direction normal to the evanescent field;
terms of dimensionless variables, without modulation,
Hamiltonian of the system can be written as

H5
p2

2
1lx1ke2x ~2!

with the canonical commutation relations@x,p#5 iK @18#.
We are using dimensionless position and momentum v

ables defined byx5az, wherez is the displacement from the
dielectric surface supporting the evanescent wave anda is
the decay rate of the evanescent wave;p5apz /mvs ~where
vs is a frequency scaling parameter,m is the mass of the
atom, andpz is the vertical momentum component along t
z axis!. While the scaled gravitational acceleration
l5ag/vs

2 , k5Ea2/mvs
2 , whereE5\uV r u2/D is the am-

plitude of the evanescent potential in terms of the Rabi f
quencyV r and the detuning of the laser from the atom
transitionD; andK5\a2/mvs is the dimensionless Planc
constant. The reference frequencyvs is chosen to be the
recoil energy related frequency, that is,vs5\a2/mK. Time
modulation of the evanescent field can be included by m
ing k time dependent, that is,k(t)5k(11«m cosVt),
whereV is the scaled driving frequency,«m ~typically less
than 1! is the modulation strength, andt5vst is the scaled
351 © 1997 The American Physical Society
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time variable. As the difference between our system and
one in@14,15# is just a canonical transformation, we are m
tivated to find similar phenomena in this important physi
system.

If the modulation strength is very small, the Hamiltonia
of our system becomes

H5
p2

2
1lx1ke2x1«m cosVt. ~3!

Adopting the following canonical transformation:

X5
]F

]P
5x2«m cosVt, ~4!

p5
]F

]x
5P1«mV sin Vt ~5!

we have the new Hamiltonian Hn5P2/2
1X(l2«mV2 cosVt)1ke2X. Compare with Eq.~1!; if
we choosev5V, we have the following correspondence:

l→«0 and «mV2→«. ~6!

As a result the thresholds for localization and delocalizat
in our system are

«m.
l

4V2 and «m.
1

2AV
. ~7!

We would like to point out that different systems ma
have different variables that show localization and deloc
ization. In the system under discussion, through trials
comparisons, we find that the energy squared is a good i
cator of localization.

Classically the system is described by Hamilton’s eq
tions:

ẋ5p, ~8!

ṗ52l1k~11«m cosVt!e2x, ~9!

where an overdot indicates differentiation with respect to
scaled time. We solve the above equations numerically
means of the fourth-order symplectic integrator@19#. This is
a periodically driven nonlinear oscillator. Generally su
systems exhibit regions of regular and chaotic motion
phase space, depending on the modulation strength. Acc
ing to KAM theorem @20#, if the perturbation is smal
enough, most of the phase-space curves of the unpertu
model will remain but become distorted; for moderate p
turbation, the phase space becomes a mixture of stoch
and regular motion; for large perturbation, the motion b
comes globally chaotic. A stroboscopic portrait or Poinc´
section@21# is proven to be an effective technique to vie
the complicated motion in phase space. We need to wor
the globally chaotic regime to see dynamical localization

In order to calculate the mean of energy squared, we h
to find a proper way to describe the atomic dynamics.
will use probability distributions in phase space. We defin
classical state to be a probability measure on phase spa
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the form ofQ(x,p)dx dp whereQ(x,p) is the joint prob-
ability density. The density then obeys the Liouville equati

]Q

]t
52$H,Q%x,p5p

]Q

]x
2@l2k~11«m cosVt!e2x#

]Q

]p
,

~10!

where$,%x,p is the usual Poisson bracket. This equation c
be solved by the method of characteristics@22#. We choose
the initial stateQ0(x,p) to be the Wigner function, which is
a bivariate Gaussian centered on (x0 ,p0) with position vari-
ancesx and momentum variancesp:

Q0~x,p!5
1

2pAsxsp

expF ~x2x0!
2

2sx
GexpF ~p2p0!

2

2sp
G .

~11!

The solution to Eq.~10! is

Q~x,p,t!5Q0@ x̄ ~x,p,2t!, p̄~x,p,2t!#, ~12!

where@ x̄ (x,p,2t), p̄(x,p,2t)# is the trajectory generate
by Hamilton’s equations~8! and ~9! .

In order to calculate the mean of energy squared a
function of time, we track 2000 points in phase space i
tially distributed with a density given by Eq.~11!. Because
we are just interested in long time evolution, we will plot th
statistics at timest5(2p/V)s, wheres is an integer referred
to as the strobe number.

Quantum mechanically the system is governed by
time dependent Schro¨dinger equationiK (d/dt)uc&5Huc&,
where H5p2/21lx1k(11«m cosVt)e2x, and is solved
numerically by the second order split-operator method@23#.
The calculation of the mean of the energy squared is car
out in the following way:

The time independent part of the Hamiltonian
H05p2/21V(x), whereV(x)5lx1ke2x. So the mean of
the energy squared is given by

^H0
2&5 K p44 L 1^V~x!2&1 Re ^p2V~x!&. ~13!

The calculation of the first two terms is straightforward wh
the calculation of the third term needs some elaboration:

^p2V~x!&5^cup2V~x!uc&5E
2`

1`

dp p2c~p!* r ~p!,

~14!

wherec(p)* is the conjugate of the wave function in th
momentum representation and r (p)5(1/
A2pK)*2`

1`dxc(x)V(x)e2 ipx/K is just the Fourier transform
of the combination ofc(x)V(x). The statistics at times
t5(2p/V)s will be plotted, withs the strobe number.

We choose the parameters as follow
l50.4, V52.52, K51, and k51000. Then the condi-
tions for localization and delocalization are«m.0.016 and
«m.0.315, respectively.

The initial state is chosen to be a minimum uncertain
state, which has the wave function
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f~x,0!5~2psx!
21/4 expS i p0xK 2

~x2x0!
2

4sx
D ~15!

with initial mean positionx0, initial mean momentump0,
position variance sx , and momentum varianc
sp5K2/4sx . In all the calculations, scaled dimensionle
parameters are used.

Figure 1 is the stroboscopic portrait of the system w
«m50.1,p050, andx055 going up to 25 with an incremen
of 1. Obviously, if we choosex0 to be bigger than 16, the
motion will be in the globally chaotic regime.

Figure 2 is the classical and quantum distributions of
mean of the energy squared against the strobe numbers un-
der the conditions«m50.1,x0518,p050,sx51,sp50.25,
with the dashed line representing the classical case and
solid line the quantum case. While the classical distribut
diffuses indefinitely with time, the quantum distribution sat
rates quickly. Dynamical localization is clearly demo
strated.

Figure 3 is the classical and quantum distributions of
mean of the energy squared against the strobe numbers un-
der the same conditions as those in Fig. 2, but w
«m50.35 located in the delocalization regime. The dash
and solid lines represent the classical and quantum res
respectively. As the modulation exceeds both the class
chaos limit and the quantum border, the quantum distribu
shows unbounded diffusion, and delocalization occurs.

Now let us have a look at the practical paramet
corresponding to our simulation: for a Cesium ato
m52.21310225 kg, let a54.93106 m21, then vs51.1
3104 Hz, the modulation frequency isvm52.753104 Hz,
while the initial position of the atoms is about 3.67mm and

FIG. 1. Stroboscopic portrait of the system withk51000,
l50.4, K51,V52.52, «m50.1, p050, andx055 ~going up to
25 at an increment of 1!.
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FIG. 3. Classical and quantum distributions of the mean of

energy squared against the strobe numbers for the periodically
modulated evanescent wave withk51000, l50.4, K51,
V52.52, «m50.35, x0518, p050, sx51, andsp50.25, with
the dashed line representing the classical case and the solid lin
quantum case.

FIG. 2. Classical and quantum distributions of the mean of
energy squared against the strobe numbers for the periodically
modulated evanescent wave withk51000, l50.4, K51,
V52.52, «m50.1, x0518, p050, sx51, and sp50.25, with
the dashed line representing the classical case and the solid lin
quantum case.
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354 56WEN-YU CHEN AND G. J. MILBURN
the time at which the localization occurs is about 13.6 m
The time scale is not too big, but we have to find a way
start the atoms very close to the surface and minimize
dissipation effects to allow the atoms enough time to sh
the above interesting phenomena.

But how can we measure the energy of the atom? Acco
ing to Liston@24#, if the evanescent wave forming the atom
mirror is coupled to an optical cavity, as the atom falls
peatedly onto the evanescent wave and is reflected awa
alters the phase of the light field. The magnitude of the ph
change depends on the energy of the atom, the larger
energy, the smaller the phase change. Therefore if we a
the atom to bounce for some time period, the natural f
evolution will result in an entangled state, where the parts
the atomic wave function with larger energies will b
coupled to the parts of the field with smaller phase chang
Then the measurement of the phase quadrature of the
field will reveal information concerning the energy of th
atom. An alternative way to see delocalization would be
s
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wait until the atoms become sufficiently excited to penetr
the evanescent potential and adhere to the surface. Th
analogous to ionization in chaotic atomic models. Localiz
tion would then correspond to a suppression of adhesion

In summary, we have shown both localization and de
calization in the atomic gravitational cavity. The predict
effects rest entirely on coherence, so it is very importan
keep the noise levels very low in order to observe them
perimentally. Firstly, we have to suppress spontaneous e
sion by means of sufficiently large detuning. Secondly,
have to choose a good combination of parameters so tha
surface adsorption@25# is small enough to allow long-time
evolution of atoms. Finally, we have to keep other no
sources, such as intensity noise of the evanescent wave,
low as well.

We would like to thank Dr. S. Dyrting for stimulating
discussions and Dr. C. A. Holmes for providing the cano
cal transformation used in this paper.
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