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Quantum chaos in the atomic gravitational cavity
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We report quantum chaos phenomena in the atomic gravitational cavity. We consider the reflection of cold
atoms from a temporally modulated evanescent wave. In the globally chaotic regime, for small modulation, the
squared energy distribution as a function of time demonstrates dynamical localization. However, for larger
modulation delocalization occursS1063-651%97)11607-5

PACS numbegps): 05.45:+b, 03.65.Sq, 42.50.Dv

How will a classically chaotic system behave quantum 2
mechanically? This has been the topic for quantum chaos for H(x,p,t)= 5 +eox+ex coswt, x=0, (1)
tens of years. According to Casatial.[1], when a classical
system is subjected to strong time-periodic perturbation, it§;here x and p are the position and momentum variables,
motion becomes globally chaofic, and it will indefinitely ab- . - ande are the constant field strength and the perturbation
sorb energy from the external field in a diffusive way. How- amplitude, ando is the perturbation frequency.
ever, this “diffusive absorption” is suppressed by the quan-  The condition for the onset of global chaotic behavior
tum interference effect. This is the so-called dynamlcal|eading to dynamical localization is;>s/4. And the

localization phenomenon, which is the analogy of Andersony,eshold for the transition from localization to delocaliza-
localization of solid state physics. This effect has been distion, that is the delocalization border é5=0.5 »%2 pro-

cussed in model systems in quantum chaos such as thgjeq that the condition of classical chasg>eo/4 is also
kicked rotator[2], quantum bouncer with infinite potential satisfied.

[3], and atomid 4] and moleculafS] models. There is als0. e gystem we discuss is the atomic gravitational cavity
experimental evidence that it occurs in hydrogen atoms iy 7] consisting of atoms bouncing vertically from an eva-
Rydberg states driven by a strong microwave il and  agcent light field, which provides a reflection potential step
atoms in tlme-_depende_nF stan_dmg waBed]. The_oret|c_ally, varying rapidly with the distance from the boundary. The
under appropriate conditions, it should appear in periodicall mplitude of the light field is periodically modulated in time.
driven quantum systems, which are chaotic in their classic toms released from a magneto-optical tOT) form a
limit. Proposals for observing the effect include periodically .44 “beam.” The cold atoms drop vertically, and are re-
driven Josephson junctioi%0] and optical fibres with peri-  fiected by the evanescent wave. We only consider the dy-
odically varying index of refractiof11]. namics in the direction normal to the evanescent field; in

I_Dyn_amlcal _Iocallzanon IS a very Qe”era' phenomenon ™erms of dimensionless variables, without modulation, the
periodically driven systems, but it will not occur under con- o wiltonian of the system can be written as

ditions of resonance or in special cases distinguished by

some form of translational invarian¢&2,13. The “delocal- p2

ization” in such cases is a purely quantum effect: the long- H=—=+Ax+ ke * 2)

time unbounded propagation is not related to the correspond- 2

ing classical diffusion[12]. But is there a quasiclassical ) _ ) )

unbounded diffusion in the quantum context? By means ofVith the canonical commutation relatiofs,p]=iK [18]. _

studying the dynamics of a quantum particle in a triangular We are using dimensionless position and momentum vari-

potential well under a monochromatic driving, Casettial. ~ @bles defined by=az, wherez is the displacement from the

[14,15 found that a simple, physically relevant model exhib- dielectric surface supporting the evanescent wave ansl

its a transition from a localized regime to a delocalized ondhe decay rate of the evanescent wave;ap,/mws (where

as the strength of the monochromatic perturbation is in«s is @ frequency scaling parameten, is the mass of the

creased beyond a quantum border in addition to the classicafom, andp, is the vertical momentum component along the

chaotic one. In Ref(16], the delocalization in systems such Z axis. While the scaled gravitational acceleration is

as this was explained in terms of a characteristic change iN=ag/w}, k=Ea?/mw;, whereE=7|Q,|?/A is the am-

the structure of the Floquet eigenstates of the system. Sugtitude of the evanescent potential in terms of the Rabi fre-

behavior is generic for systems driven by a high frequencyjuency(}, and the detuning of the laser from the atomic

field, in which the density of states is slowly varying. Pre-transitionA; andK =% a?/ mwy is the dimensionless Planck

cisely such conditions prevail in the atomic gravitationalconstant. The reference frequeney is chosen to be the

cavity. recoil energy related frequency, that is,=#% o>/mK. Time
The system discussed|ihi4,15 models the dynamics of a modulation of the evanescent field can be included by mak-

particle elastically bouncing on a fixed wall@t=0 under a ing « time dependent, that isx(7)=«(1+e,, cos{7),

constant field plus a monochromatic perturbation and is dewhere () is the scaled driving frequency,, (typically less

scribed by the following Hamiltonian: than 1) is the modulation strength, ant= wt is the scaled
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time variable. As the difference between our system and théhe form of Q(x,p)dx dp where Q(x,p) is the joint prob-
one in[14,15 is just a canonical transformation, we are mo- ability density. The density then obeys the Liouville equation
tivated to find similar phenomena in this important physical

system. JQ ~dQ ,9Q
If the modulation strength is very small, the Hamiltonian 5, — — 1HQlxp= P—y ~[A—x(1+enycosfine ]5’
of our system becomes (10)
2 . . . .
H— P_+)\X+ e~ XHem cosQr 3) where{,}, , is the usual Poisson bracket. This equation can

2 be solved by the method of characteris{i2g]. We choose
the initial stateQ,(x,p) to be the Wigner function, which is
Adopting the following canonical transformation: a bivariate Gaussian centered og (p,) with position vari-

anceo, and momentum variance,,:

oF
X=—=Xx—g, cosQr, (4
i ' Qo(x,p)= ! exp{(X_XO)2 xp{(p_pO)z
IE o 2m\oyoy 20 20, |
p=— =P+en sinQr (5 11
o The solution to Eq(10) is
we have the new Hamiltonian H,=P?/2
+X(N—enQ? cosQ7)+ ke X. Compare with Eq(1); if O X (XD —7) D(X.D. — 12
we choosew =), we have the following correspondence: QUX.P.7)=Qol X(x,p, = 7). p(X.P. = 7)), 12
A—e, and e 02—, ©) where[ x(x,p,— 7),p(x,p,— 7)] is the trajectory generated

by Hamilton’s equation$8) and(9) .
As a result the thresholds for localization and delocalization In order to calculate the mean of energy squared as a
in our system are function of time, we track 2000 points in phase space ini-
tially distributed with a density given by Eql1). Because
A we are just interested in long time evolution, we will plot the
Sm>W and sm>m. (7) statistics at times=(27/Q)s, wheres is an integer referred
to as the strobe number.

. . . Quantum mechanically the system is governed by the
We would like to point out that different systems may .. - g o
have different variables that show localization and delocaI:[Ime dependent Schadinger equatioriK (d/d)|#)=H|#),

—n2 —X H
ization. In the system under discussion, through trials angvhere H=p 2+ Ax+ k(1 +ep cosllne 7, and is solved

. . ; - “numerically by the second order split-operator metf@@l.
comparisons, we find that the energy squared is a good Ind'T'he calculation of the mean of the energy squared is carried
cator of localization.

. . . - out in the following way:
tior%I.assm::llly the system is described by Hamilton's equa- The time independent part of the Hamiltonian is
' Ho=p?/2+V(x), whereV(x)=\x+ ke *. So the mean of

X= 0, ®) the energy squared is given by

4

L
4

p=—-A+k(l+ey cosQr)e X 9) <H§>:< >+<V(x)2>+ Re (p2V(x)). (13

he calculation of the first two terms is straightforward while

scaled time. We solve the above equations numerically b . ; .
he calculation of the third term needs some elaboration:

where an overdot indicates differentiation with respect to thiI
means of the fourth-order symplectic integrdtb®]. This is

a periodically driven nonlinear oscillator. Generally such o

systems exhibit regions of regular and chaotic motion in (pZV(x))z(wlpZV(X)h@:f dp PPY(pP)*r(p),

phase space, depending on the modulation strength. Accord- —o

ing to KAM theorem [20], if the perturbation is small (14

enough, most of the phase-space curves of the unperturbed

model will remain but become distorted; for moderate perWhere ¢(p)* is the conjugate of the wave function in the

turbation, the phase space becomes a mixture of stochasfigomentum representation and  r(p)=(1/

and regular motion; for large perturbation, the motion be-vV27K) [ Zdxy(x)V(x)e 'P¥ is just the Fourier transform

comes globally chaotic. A stroboscopic portrait or Poincareof the combination ofy(x)V(x). The statistics at times

section[21] is proven to be an effective technique to view 7=(27/Q)s will be plotted, withs the strobe number.

the complicated motion in phase space. We need to work in We choose the parameters as follows:

the globally chaotic regime to see dynamical localization. A=0.4, 1=2.52, K=1, and k=1000. Then the condi-
In order to calculate the mean of energy squared, we haviions for localization and delocalization asg,>0.016 and

to find a proper way to describe the atomic dynamics. We:,,>0.315, respectively.

will use probability distributions in phase space. We define a The initial state is chosen to be a minimum uncertainty

classical state to be a probability measure on phase space state, which has the wave function
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FIG. 1. Stroboscopic portrait of the system witt= 1000,
A=0.4, K=1,0=252, £,=0.1, py=0, andx,=5 (going up to
25 at an increment of)1

PoX  (X—Xo)?

d(x,0)=(2moy) 1’4exp( do,

) (15

with initial mean positionx,, initial mean momentunpg,
position variance o,, and momentum variance
a'p=K2/4o'X. In all the calculations, scaled dimensionless
parameters are used.

Figure 1 is the stroboscopic portrait of the system with
em=0.1,py=0, andxy="5 going up to 25 with an increment
of 1. Obviously, if we choose, to be bigger than 16, the
motion will be in the globally chaotic regime.

Figure 2 is the classical and quantum distributions of the

mean of the energy squared against the strobe number
der the conditionse,,=0.1X,=18p;=0,0,=1,0,=0.25,

with the dashed line representing the classical case and thua 4000.0 + ’ .
solid line the quantum case. While the classical distribution

diffuses indefinitely with time, the quantum distribution satu-
rates quickly. Dynamical localization is clearly demon-
strated.

Figure 3 is the classical and quantum distributions of the /

mean of the energy squared against the strobe numbar
der the same conditions as those in Fig. 2, but with

QUANTUM CHAOS IN THE ATOMIC GRAVITATIONAL CAVITY
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FIG. 2. Classical and quantum distributions of the mean of the
energy squared against the strobe numbdor the periodically
modulated evanescent wave withk=1000, A=0.4, K=1,
0=252, ¢,=0.1, X,=18, pp=0, o,=1, and g,=0.25, with
the dashed line representing the classical case and the solid line the
quantum case.
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em=0.35 located in the delocalization regime. The dashed
and solid lines represent the classical and quantum results
respectively. As the modulation exceeds both the classical
chaos limit and the quantum border, the quantum distribution
shows unbounded diffusion, and delocalization occurs.
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FIG. 3. Classical and quantum distributions of the mean of the

Now let us have a look at the practical parametersenergy squared against the strobe numbdor the periodically

corresponding to our simulation:
m=2.21x10 % kg, let a=4.9x10° m™!, then ws=1.1
X 10* Hz, the modulation frequency i®,,=2.75< 10* Hz,
while the initial position of the atoms is about 3./ and

for a Cesium atommodulated evanescent wave witlk=1000, \=0.4, K=1,
0=2.52, £,=0.35, X=18, pe=0, ox=1, ando,=0.25, with

the dashed line representing the classical case and the solid line the
guantum case.
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the time at which the localization occurs is about 13.6 mswait until the atoms become sufficiently excited to penetrate
The time scale is not too big, but we have to find a way tothe evanescent potential and adhere to the surface. This is
start the atoms very close to the surface and minimize thenalogous to ionization in chaotic atomic models. Localiza-
dissipation effects to allow the atoms enough time to showion would then correspond to a suppression of adhesion.
the above interesting phenomena. In summary, we have shown both localization and delo-
But how can we measure the energy of the atom? Accordcalization in the atomic gravitational cavity. The predicted
ing to Liston[24], if the evanescent wave forming the atomic effects rest entirely on coherence, so it is very important to
mirror is coupled to an optical cavity, as the atom falls r€-keep the noise levels very low in order to observe them ex-

peatedly onto the evanescent wave and is reflected away, dbrimentally. Firstly, we have to suppress spontaneous emis-
alters the phase of the light field. The magnitude of the phasgion by means of sufficiently large detuning. Secondly, we

change depends on the energy of the atom, the_ larger tkHeave to choose a good combination of parameters so that the
energy, the smaller the phase change. Therefore if we allo

the atom to bounce for some time period, the natural free\gurface adsorptiof25] is small enough to allow long-time

evolution will result in an entangled state, where the parts OFvqution of atoms. Finally, we have to keep other noise
) : 9 ' ; P sources, such as intensity noise of the evanescent wave, very
the atomic wave function with larger energies will be

coupled to the parts of the field with smaller phase changesk.)W as well.

Then the measurement of the phase quadrature of the light We would like to thank Dr. S. Dyrting for stimulating
field will reveal information concerning the energy of the discussions and Dr. C. A. Holmes for providing the canoni-
atom. An alternative way to see delocalization would be tocal transformation used in this paper.

[1] G. Casati, B. V. Chirikov, F. M. Izrailev, and J. Foisitochas-  [13] I. Guarneri and F. Borgonovi, J. Phys. 26, 119(1993.
tic Behaviour in Classical and Quantum Hamiltonian Systems|[14] F. Benvenuto, G. Casati, |. Guarneri, and D. L. Shepelyansky,
edited by G. Casati and J. Ford, Lecture Notes in Physics Vol. 7. phys. B84, 159 (1991).

93 (Springer, Berlin, 1979 p. 334. [15] C. R. Oliveira, I. Guarneri, and G. Casati, Europhys. L2,
[2] B. V. Chirikov, F. M. Izrailev, and D. L. Shepelyansky, Sov. 187 (1994.
Scie. Rev.2c, 209(198)). [16] N. Brenner and S. Fishman, Phys. Rev. L&#t. 3763(1996.

[3] S. T. Dembinski, A. J. Makowski, and P. Peplowski, Phys. . . ..
Rev. Lett.70, 1093(1993. [17] H. Wallis, J. Dalibard, and C. Cohen-Tannoudji, Appl. Phys. B

[4] G. Casati, I. Guarneri, and D. L. Shepelyansky, IEEE J. Quan- 54, 407 (1992.

tum Electron.24, 1420(1988. [18] Wen-Yu Chen and G. J. Milburn, Phys. Rev. 34, 2328

[5] R. Graham and M. Hanerbach, Phys. Rev. 43, 3966(1991). (1995.

[6] E. J. Galvez, B. E. Sauer, L. Moorman, P. M. Koch, and D.[19] E. Forest and M. Berz.ie Methods in Optics |l edited by
Richards, Phys. Rev. Letf1, 2011(1988. K.B.Wolf (Springer, Berlin 198p

[7] J. E. Bayfield, G. Casati, |. Guarneri, and D. W. Sokol, Phys.[20] A. J. Lichtenberg and M. A. LibermarRegular and Chaotic
Rev. Lett.63, 364(1989. Dynamics(Springer, Berlin, 1992

(8] F. L. Moore, J. C. Robinson, C. Bharucha, P. E. Williams, and[21] H. Poincare Les Methods Nouvelles de la Mechanique Celest
M. G. Raizen, Phys Rev. Let73, 2974(1994 (Gauthier-ViIIars, Paris, 1892

9] ‘(]éec(:).r zignsén"\l% B,\;'agcr:‘z’ii';énl" ;\f]goga, qurf;;rgﬁ’ Sh ':[22] R. Courant and D. HilbertMethods of Mathematical Physics
g . Ao ' ' L AS Vol. Il, (John Wiley & Sons, New York, 1989

Rev. Lett.74, 3963(1995.
[10] R. Graham, M. Schlautmann, and D. L. Shepelyansky, Phys.23] R- Kosloff, J. Phys. Chen82, 2087(1988.

Rev. Lett.67, 255(199)). [24] G. Liston, Ph.D. thesis, the University of Auckland, 199®-
[11] R. E. Prange and S. Fishman, Phys. Rev. 1681.704(1989. published.
[12] R. Lima and D. L. Shepelyansky, Phys. Rev. L&, 1377  [25] Wen-Yu Chen, G. J. Milburn, and S. Dyrting, Phys. Re\64

(1992). 1510(1996.



